skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Rongchan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article revisits the problem of global well-posedness for the generalized parabolic Anderson model on$$\mathbb {R}^+\times \mathbb {T}^2$$ R + × T 2 within the framework of paracontrolled calculus (Gubinelli et al. in Forum Math, 2015). The model is given by the equation:$$\begin{aligned} (\partial _t-\Delta ) u=F(u)\eta \end{aligned}$$ ( t - Δ ) u = F ( u ) η where$$\eta \in C^{-1-\kappa }$$ η C - 1 - κ with$$1/6>\kappa >0$$ 1 / 6 > κ > 0 , and$$F\in C_b^2(\mathbb {R})$$ F C b 2 ( R ) . Assume that$$\eta \in C^{-1-\kappa }$$ η C - 1 - κ and can be lifted to enhanced noise, we derive new a priori bounds. The key idea follows from the recent work by Chandra et al. (A priori bounds for 2-d generalised Parabolic Anderson Model,,2024), to represent the leading error term as a transport type term, and our techniques encompass the paracontrolled calculus, the maximum principle, and the localization approach (i.e. high-low frequency argument). 
    more » « less
    Free, publicly-accessible full text available May 3, 2026
  2. Free, publicly-accessible full text available April 1, 2026